Time: 3 Hours O.P.Code: 23CE0107 a Define specific gravity. c Define fluid pressure. (AUTONOMOUS) B.Tech. II Year I Semester Regular&Supplementary Examinations November-2025 FLUID MECHANICS a Explain the phenomenon of capillarity. Obtainan expression for CO2 j Define hydraulic gradientline. a Explain the compressibility. Derive equation for capillary rise and fall. a Derive the expression for Total Pressure of inclined plane surface. a Define Total pressure and Centre of Pressure. b Derive the expression for Total Pressure of horizontal plane surface. Define compressible flow. Define fluid. SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR Writethe Bernoulli's equation. Define streamline. What is Centre of buoyancy? Define total energy line. Define vortex flow Calculate the capillaryrise in a glass tube of 2.5mm diameter when capillaryrise of a liquid. When the pressure of liquidis increased from 3.5 MN/m²to 6.5 MN/m² The specific gravity for mercury is Givenas13.6& angleof contactis 0.0725N/m² for water and 0.52 N/m² for mercuryin contact with air. immersed vertically in i) water & ii) mercury. Take surfacetension is modulus of elasticity of the liquid? its volume is found to decrease by 0.08 percent. Calculate the bulk $\frac{PART-A}{\text{(Answer all the Questions 10 x 2=20 Marks)}}$ (Answer all Five Units $5 \times 10 = 50$ Marks) R23 (Civil Engineering) H.T.No. UNIT-II UNIT-I 0R Max. Marks: 70 C02 CO1 CO1 C02 CO5 C03 CO₃ C02 C02 C06 C06 C05 C02 C02 C02 C02 **L**2 L2 4 L2 12 L2 L2 L2 2M 5M 5M 5M 5M 2 2M 5M 5M 5M

			is same & equal	
			flow in the main is 3.0 m ³ /s the coefficient of friction for each parallel	
			are 2000m & 0.8m.Calculate the rate of flow in each parallel pipe if total	
			2000m & 1.0m respectively. While the length & dia of 2nd parallel pipe	
		•	shown in figure. Above the length & and dia for the first parallel pipe are	
10M	L4	C06	1 A main pipe divides into two parallel pipes which again forms one pipe as	11
			OR	
5M	L2	C05	b Derive the expression for flow through parallel pipes.	
5M	L2	C06	a Derive the expression for flow through pipes in series.	10
			ONTY-V	
			and state the assumption made for such a derivation.	
		2 4	fluid.Derive the Expression for Bernoulli's theorem from first principle	
10M	L4	C05	State Bernoulli's theorem for steady flow of an incompressible	9
		•	OR	
			venturimeter? Take Cd =0.98.	
			shows a reading of 25cm. calculate discharge of oil through horizontal	
		00	diameter 20cm and throat dia 10cm the oil-Hg differential manometer	
4M	L4	C05		
		2.0	Calculate the intensity of pressure at the section 2.	
			above the datum.If the pressure at the section1 is 39.24 N/cm ² .	
			35lit/sec.The section1 is 6m above.The datum and section2 is 4m	
			cm at section & 2 respectively. The rate of flow through pipeis	
6M	<u>L4</u>	C05	a The water is flowing through a pipe having diameter of 20 cm and 10	90
			UNIT-IV	
			velocity And acceleration of a fluid particle at(2,1,3)attimet=1.	
5M	L4	ÇO3	city vector in a fluidflowV=4x3i-10x2yj+2tk, Calculate the	_
			properties.	19
5M	L2	C03	a Explainin detail about Velocity Potential Function and writeits	7
		No.	OR	
5 <u>M</u>	1.1	CO3	b Write a brief note on continuity equation for a one-dimensional flow.	_
SM M				9
!				

Derive the expression for Center of Pressure of inclined plane surface.

C02

5M

*** END ***